Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

نویسندگان

  • Sharat Kumar Pradhan
  • Saumya Ranjan Barik
  • Ambika Sahoo
  • Sudipti Mohapatra
  • Deepak Kumar Nayak
  • Anumalla Mahender
  • Jitandriya Meher
  • Annamalai Anandan
  • Elssa Pandit
چکیده

Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Association analysis for traits associated with powdery mildew tolerance in barley [Hordeum vulgare L.] using AFLP markers

Association analysis is a useful method for evaluation of significant association between molecular marker and phenotype of trait. This study was performed to evaluate association between traits related with powdery mildew resistance and molecular markers. This investigation was performed using 77 barley genotypes and AFLP markers. In phenotypic evaluation, reaction of seedlings to powdery mild...

متن کامل

Allelic diversity and association analysis for grain quality traits in exotic rice genotypes

The present research aims to study the association and allelic diversity of linked microsatellite markers to grain quality QTLs of 84 exotic rice genotypes. To this end, 9 microsatellite markers (RM540, RM539, RM587, RM527, RM216, RM467, RM3188, RM246, RM5461) were used in which a total of 61 alleles were identified with a mean of 6 alleles per locus. The polymorphism information content (PIC) ...

متن کامل

Genome-Wide Association Mapping Reveals Multiple QTLs Governing Tolerance Response for Seedling Stage Chilling Stress in Indica Rice

Rice crop is sensitive to cold stress at seedling stage. A panel of population representing 304 shortlisted germplasm lines was studied for seedling stage chilling tolerance in indica rice. Six phenotypic classes were exposed to six low temperature stress regimes under control phenotyping facility to investigate response pattern. A panel of 66 genotypes representing all phenotypic classes was u...

متن کامل

Genetic diversity analysis of recombinant inbred lines of rice (Oryza sativa L.) using microsatellite markers

Estimation of genetic diversity is an important factor in germplasm conservation and characterization. In rice breeding programs, genetic diversity information on specific regions of genome can be very useful for the application of marker assisted selection (MAS) and for gene mapping. A total of 152 rice lines were considered for breeding programs using microsatellites (SSR) technique. The tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016